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Abstract—This paper presents FruitSense, a novel fruit
ripeness sensing system that leverages wireless signals to enable
non-destructive and low-cost detection of fruit ripeness. Such a
system can reuse existing WiFi devices in homes without the
need for additional sensors. It uses WiFi signals to sense the
physiological changes associated with fruit ripening for detecting
the ripeness of fruit. FruitSense leverages the larger bandwidth
at 5GHz (i.e., over 600MHz) to extract the multipath-independent
signal components to characterize the physiological compounds
of the fruit. It then measures the similarity between the extracted
features and the ones in ripeness profiles for identifying the
ripeness level. We evaluate FruitSense in different multipath
environments with two types of fruits (i.e, kiwi and avocado)
under four levels of ripeness. Experimental results show that
FruitSense can detect the ripeness levels of fruits with an
accuracy over 90%.

I. INTRODUCTION

Recent advances in wireless technology have greatly ex-
panded the WiFi usage from providing laptop connectivity to
connecting mobile and smart devices to the Internet and home
networks. Such an evolution has resulted in the prevalence of
WiFi devices, which provides opportunities to extend WiFi’s
capabilities beyond communication, particularly in human
sensing. As the wireless signals travel through space, they
interact with human body and undergo wave phenomena
such as reflection and diffraction. These phenomena lead to
multipath effects, which carry a rich set of information about
the physical environment including the human location and
activities. Indeed, there has been a growing interest in using
multipath effects to perform human sensing, ranging from
large scale movements [30], [25], to small scale motions [5],
[27], [19], and location [28], [4], [29].

In this work, we further expand the WiFi sensing capabilities
from human sensing to sensing bio-information of fruits. In
particular, we seek to sense the degree of ripeness in fruits
with WiFi signals. Monitoring the ripeness of fruit provides
many benefits for several end-users, ranging from farmers,
to distributors, retailers and consumers. It can help farmers
to determine the optimal harvest time as the quality heavily
depends on when they are harvested. It can also assist fruit
distributors in performing rapid sorting in storage facilities
and deciding when to send their stock during post-harvest
period. Retailers can minimize losses and maintain fruit quality
through effective selling strategies based on accurate catego-
rization of the fruit ripeness. Monitoring the ripeness of fruits
throughout the supply chain thus can reduce waste as well as
improve the consistency of quality for consumers.

In this paper, we focus on inferring the ripeness of fruit for
consumers. As indicated in previous study from 2011 [10], in

north America, compare to a 12% loss of fruits and vegetables
in distribution and retail process, the loss rate is 28% after
customer purchase. This is due to fruits are sensitive to various
environmental factors such as temperature, air ventilation,
and illumination condition. Those factors are very difficult
to control especially within normal household environments.
Moreover, ordinary consumers lack the professional knowl-
edge and equipment for accurately judging fruit ripeness level
by appearance. Monitoring the ripeness level of fruits thus
can benefit customers by avoiding the unpleasantness of tart
or rotten fruit and eventually reduce the waste.

The challenge in monitoring the ripeness of fruit for
consumers lies in finding solutions that can provide non-
destructive testing at minimal cost. Existing approaches for
inferring the ripeness of fruit mainly depend on penetrome-
ter [11], refractometer [12], or spectrometer [20]. While the
penetrometer measures fruit firmness by quantifying the force
required to insert a probe into the fruit [11], refractometer
(e.g., Brix [12]) analyzes sugar content of the juice using
light refraction. Both methods, however, are destructive and
less acceptable to consumers. In contrast, spectrometer based
approach is non-destructive. It splits light signals into a fruit
and then measures the light that is emitted, absorbed or
scattered by the fruit for ripeness inference [20]. However,
traditional spectrometer instruments are bulky and expensive
(i.e., costing several thousands of dollars) and are limited to
controlled laboratory settings [20].

More recent work includes using advanced imaging tech-
niques and ultrasonic measurement systems to analyze the im-
age features (e.g., color and texture) and measure the ultrasonic
attenuation of the fruit for ripeness detection [14], [3], respec-
tively. However, these methods require specialized equipments,
and are less accessible to ordinary consumers. Recently, due
to advances in materials and fabrication techniques, portable
spectrometers that work together with smartphones have been
realized. For example, Das et al. [8] propose a smartphone
based spectrometer that can measure UV fluorescence of
Chlorophyll found in apples, whereas the company Consumer
Physics develops the sensor SCiO that can be integrated with
smartphones to analyze the molecular composition of food [2],
[1]. Although these portable solutions can be adapted by
consumers, there also are non-negligible costs incurred in
purchasing dedicated spectral sensors.

In this paper, we introduce FruitSense, a novel method
for inferring the ripeness of fruit for consumers that is both
non-destructive and low-cost. FruitSense uses WiFi signals to
sense the physiological changes associated with fruit ripening
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for ripeness detection. It allows users to reuse off-the-shelf
WiFi devices for ripeness monitoring, and thus can enable
large-scale deployment and benefit a large number of users by
leveraging the proliferation of WiFi devices and networks.

In particular, fruit ripening involves a series of physiological
changes leading to the development of a soft edible ripe
fruit. Take avocado as an example, there are changes in
the total dry matter and moisture content during maturation
and ripening. As moisture content decreases, the dry matter
increases accordingly. When wireless signals travel through a
fruit, the changes in the physiological compounds of the fruit
during ripening lead to distinct and measurable effects on the
received signals. We thus can infer the ripeness level based on
the physiological changes interpreted by the received signals.

Accurately discerning the ripeness of fruit is challenging,
however, when using a single pair of off-the-shelf WiFi de-
vices. First, the measurable changes in the received signals due
to fruit ripening are subtle, and the impact of fruit size on the
received signals might distort such changes. To address these
issues, we leverage frequency diversity by probing the fruit
with WiFi signals at multiple frequency channels. Leveraging
frequency diversity not only provides a rich set of information
to capture the subtle changes, but also enables us to examine
the change pattern among multiple channels, instead of a
single channel, to mitigate the impact of fruit size.

Addtionaly, signal propagation is dominated by multipath
in typical indoor environments when the line-of-sight (LOS)
is blocked by fruit during the ripeness sensing process. While
the WiFi based human sensing primarily relies on the signal
reflections, the reflected signals from surroundings represent
interferences to the signal component indicating the ripeness
of fruit. Once the indoor environment changes, the changes in
the received signals mainly reflect the differences in multipath
propagation instead of the physiological change of the fruit. To
accurately capture the changes corresponding to fruit ripening,
we propose to extract the multipath-independent signal compo-
nents for ripeness sensing by isolating the signal component
traveling through the fruit directly, from the ones reflected
from the surrounding environment. Specifically, we leverage
the larger bandwidth at 5GHz (i.e., over 600MHz) to derive
fine-grained power delay profile for extracting the signals that
directly went through the fruit from the multipath propagation.

Moreover, as the usable WiFi channels in 5GHz are un-
equally and non-contiguous spaced, the inverse non-uniform
Discrete Fourier Transform (NDFT) is used to derive the
fine-grained power delay profile. However, there are various
uncertainties introduced from the inverse NDFT as it relies
on proximal gradient methods to find solutions to an under
determined system. To mitigate such uncertainties, we propose
to use the Maximal Overlap Discrete Wavelet Transform
(MODWT) for multi-resolution feature analysis, which is not
sensitive to the uncertainties such as the starting and ending
points (and possibly outliers) of a series of signal.

More specifically, our system first probes the fruit with
WiFi signals hopping at all available 5GHz channels. The
sampled channel frequency response, which is exported by

the WiFi NICs in the form of Channel State Information
(CSI), then goes through the calibration process to correct
errors due to hardware limitation of WiFi NICs. We then stitch
together the calibrated CSI from each individual channel. Due
to the usable WiFi channels in 5GHz are unequally and non-
contiguous spaced, the inverse NDFT is used to derive the
fine-grained power delay profile for multipath removal. Next,
we identify and extract the signals that directly went through
the fruit for ripeness detection. At last, we use the Maximal
Overlap Discrete Wavelet Transform (MODWT) to extract
signal features over multiple channels at multiple resolutions
and compare the features against known ripeness profiles that
identify the degree of ripeness.

We evaluate FruitSense in different multipath environments
with two types of fruit: kiwi and avocado. The fruit samples
are purchased from two venders with different ripeness levels.
The volume of each type of fruit is about 75 at each ripeness
level. We identify the ripeness as one of the four levels:
unripen, half ripen, ripen and over ripen. Experimental results
show that FruitSense is highly effective in detecting fruit
ripeness. It achieves an accuracy at over 90% in identifying
the ripeness level of fruit.

The main contributions are summarized as follows.
• We show that the WiFi signals can be utilized to capture

the physiological changes of fruit for ripeness detection.
The system is non-destructive and low-cost, without the
need for additional sensors.

• We leverage frequency diversity to capture the physiolog-
ical changes of the fruit, and utilize the larger bandwidth
at 5GHz to combat multipath for extracting multipath-
independent signal components for ripeness detection. We
further utilize MODWT to extract features over multiple
frequencies for identifying the level of fruit ripeness.

• We conduct extensive experiments in different multipath
environments with two typical fruits under various condi-
tions. Experimental results show that FruitSense achieves
around 90% ripeness level detection accuracy.

II. PRELIMINARIES

A. Fruit Ripening

There exists two types of fruits according to the regulatory
mechanisms underlying their ripening process: climacteric
and non-climacteric fruits. Climacteric fruits, such as kiwi,
avocado, apple and banana will continue to ripen after the
fruit has left the plant; however, non-climacteric fruits, such
as grape, orange and pineapple stop the ripening process the
minute they leave the plant [24]. In this work, we focus
on sensing the ripeness of climacteric fruits, as we do not
have the access to the non-climacteric fruits that are on the
plants. Nevertheless, our system can be extended to sensing
the maturity of non-climacteric fruits during the growth and
development process while they are on the plants.

Fruit ripening is a highly coordinated and an irre-
versible phenomenon involving a series of physiological and
organoleptic changes [24]. For example, some fruits, such as
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Fig. 1. Multipath propagations in an indoor environment during fruit ripeness
sensing.

banana and apple, come in a wide array of colors that change
throughout their ripening process, with the brightest colors
often occurring when the fruit is optimally ripened. Such color
changes enable people to predict the ripeness level based on
external visual inspection. By contrast, some other fruits, like
kiwi and avocado, do not exhibit obvious organoleptic changes
during the ripening process. It is hard for ordinary people to
tell the ripeness level based on organoleptic testing. We thus
focus on kiwi and avocado and seek to sense the ripeness based
on physiological changes, instead of organoleptic changes.

Existing work uses the physiological changes such as oil
context, dry matter and moisture content to determine the
ripeness of avocado [20]. Specifically, oil content and dry mat-
ter increase during development and continue to change during
ripening [20]. As oil content increases, the moisture content
decreases by the same amount, so that the total percentage
of oil and moisture content remains constant. Similarly, the
content change within dry matter can be used to track the
ripeness of kiwi fruit [24]. In particular, dry matter of kiwi
is mainly comprised by the carbohydrates and starch, which
gradually transform to soluble solids such as sugar content
during the ripening. The percentage of carbohydrates and
starch thus could be used as an indicator of fruit ripeness.

B. WiFi Sensing based Approach

Figure 1 illustrates a typical experimental setup of sensing
fruit ripeness using a pair of WiFi devices in an indoor
environment. The testing fruit is placed in between a pair of
closely spaced transmitter and receiver, thus blocking the line-
of-sight (LOS) signal propagation. We rely on the received
signal component that directly travels through the fruit to
sense its physiological change. The phenomenon where radio
waves travel through and modulated by the fruit is commonly
referred as refraction, which describes the signal passes from
one medium to another. In our case, it is the WiFi signal travels
from air to fruit, and then from fruit to air.

To quantify the effect of the refraction, we could leverage
the concept of permittivity, which is a measure of how an
electric field affects, and is affected by, a dielectric medium
(i.e, the fruit in our case). In particular, the complex relative
permittivity ε∗ of a material to that of free space in frequency
domain can be described as following [18]:

ε∗ = ε
′
− jε

′′
(1)

The real part ε
′

is referred to as the dielectric constant, which
describes the ability of the material to store energy when it is

0

Time(ns)

P
o

w
e

r

τ

Path1

Path2

Path3

Path4

τ + 1.5 τ + 3 τ + 4.5

Fig. 2. Combining all the channels at 5GHz provides a power delay profile
with sufficient resolution to differentiate multipath propagations.

exposed to an electric field. The imaginary part ε
′′

is referred
to as dielectric loss factor, and j =

√
−1. The dielectric loss

factor influences both energy attenuation and absorption, and
is commonly used to describe the ability of the material to
dissipate electrical energy as heat.

As fruit ripening involves a series of physiological changes,
fruit at different ripeness levels results in different dielectric
constants and loss factors. The permittivity of the fruit thus
could be used as an indicator of its internal quality. Indeed,
there exists prior work on using expensive and dedicated
dielectric spectroscopy to measure the dielectric properties of
fruit and vegetable for internal quality analysis [17].

As we use the off-the-shelf WiFi devices, we exam how
the received signal changes due to the changed physiological
compounds of the fruit. Specifically, when the WiFi signal
travels through the fruit, the electric field strength decreases
with the distance from its surface. To quantify such an effect,
the attenuation factor α, which depends on the dielectric
properties of the fruit, could be leveraged. It is given by:

α =
2π
λ0

[1
2
ε

′
(√

1 +
(ε′′

ε′

)2
− 1
)]1/2

(2)

where λ0 is the free-space wavelength of the WiFi signal [18].
Based on Equation 2, we know that the fruits at different
ripeness levels lead to different attenuation factors, which
could be measured by analyzing the received signals. There-
fore, instead of using dedicated dielectric spectroscopy, we
leverage the received signal that directly travels through the
fruit for ripeness detection.

Excepting for the controllable experimental settings such
as the location of the fruit in between the transmitter and
the receiver, the sizes of the fruit could be slightly different,
which may affect the signal attenuation as well. Note that from
Equation 2, we can observe that the WiFi signals at different
frequencies (wavelengths) result in different attenuation factors
as well. We thus can leverage the frequency diversity by
probing the fruit at multiple channels, and then analyze the
relative changes between multiple frequencies to mitigate the
impact of fruit size.

C. Practical Issues

While the intuition is simple, there are significant challenges
to accurately capture the received signal that directly travels
through the fruit for extracting the multipath-independent
features that characterize the physiological compounds of the
fruit. As shown in Figure 1, besides the signal refraction, there



exists signal reflections. The signals that reflected from the
walls, furniture, and human body will be combined with the
signal travels through the fruit at the receiver. This leads to
the fact that the measured signals at the receiver mainly reflect
the multipath environments. Thus it is highly sensitive to envi-
ronment changes. To make the system robust to the multipath
propagation, we need to separate the signal component that
travels through the fruit from the reflected ones.

Intuitively, this can be done by leveraging the power delay
profile, which gives the power intensity of received signals
as a function of propagation delay. By performing Inverse
Fast Fourier Transform (IFFT) of the received signal mea-
surements, we are able to extract the first arriving signal,
which travels through the shortest path among all the paths
from the transmitter to the receiver. However, the widely used
bandwidth of a WiFi channel is either 20MHz or 40MHz,
which results in a power delay profile with a resolution at
either 50ns or 25ns. Given that the wireless signal travels
at the speed of light, such resolutions correspond to distance
resolutions of 15m and 7.5m, respectively. In typical indoor
environments, a majority of the reflected signals have path
lengths smaller than 15m or 7.5m. Therefore, the obtained first
arriving signal based on each channel is still a mixture of the
signals that travel through the fruit and multipath. Therefore,
simply performing IFFT on the signal measurements at each
WiFi channel provides insufficient time or distance resolution
for extracting the signal traveling through the fruit.

As WiFi spans multiple channels at both 2.4GHz and 5GHz,
we propose to probe the fruit at all available channels of
5GHz with larger bandwidth. Combining all the channels at
5GHz (i.e., from 5.18GHz to 5.825GHz) brings over 600MHz
bandwidth, which corresponds to a 1.5ns time resolution or
to a 0.45 meters distance resolution. Such a high resolution
is sufficient for us to separate the signal traveling through the
fruit from the reflected ones, as shown in Figure 2. Given
the signal measurements at each channel, we then stitch these
measurements together to derive a fine-grained power delay
profile for multipath removal.

One problem with that stitching lies in the fact that
the usable WiFi channels at 5GHz are unequally and non-
contiguous spaced due to FCC regulation. For example, the
channels from 120 to 128 are partially occupied by the
weather radar usage in the US, and different countries apply
their own regulations. Venders usually disable some of the
5GHz channels in compliance with the regulations of different
countries before shipping the WiFi NICs. We thus cannot
simply use IFFT, which only works for uniformly-spaced
frequency measurements. To overcome this issue, we adopt
the inverse non-uniform Discrete Fourier Transform (NDFT),
which is capable of deriving a fine-grained power delay profile
from non-uniformly spaced channels at 5GHz.

Another challenge lies in the feature extraction process for
ripeness level identification. This is because various uncer-
tainties are introduced by the process of solving an under
determined system with inverse NDFT across different sam-
ples. Such uncertainties could result in inconsistent features

from various samples. To overcome such challenge, we utilize
Maximal Overlap Discrete Wavelet Transform (MODWT),
which is shift invariant and is not sensitive to the starting and
ending points (and possibly outliers) of the data. By utilizing
MODWT, we are able to minimize the uncertainty caused by
NDFT and extract consistent features from given samples.

III. SYSTEM DESIGN

A. System Overview

Our system uses a pair of WiFi devices to sense the phys-
iological compounds of fruit for ripeness detection. Figure 3
illustrates the flow of our system. It first probs the fruit with
WiFi signals hopping through all usable channels at 5GHz.
The system then collects the sampled channel frequency
response in the form of Channel State Information (CSI)
including the information of phase and amplitude. The CSI
measurements are reported by the WiFi NIC at the receiver.

The CSI measurements are then preprocessed to calibrate
both the phase and amplitude errors. In particular, the raw
phase contains residual synchronization errors, which are com-
posed of two types of errors: linear errors with respect to the
subcarrier indexes and the constant errors across subcarriers.
Our system calibrates the linear phase errors by searching
for an optimum phase compensation value that minimizes
the differences in the derived power delay profiles across
multiple channels. The constant phase errors and amplitude
errors could be mitigated by averaging the measurements of
multiple packets that received in the coherence time window.

Given the calibrated CSI measurements, our system per-
forms multipath removal for extracting the signal that directly
travels through the fruit. Our system stitches the CSI measure-
ments of all the channels together to enlarge the bandwidth
for improving the resolution of the power delay profile. The
inverse NDFT technique is used to overcome the problem of
the unequal and non-contiguity spacing of 5GHz channels. Our
system then identifies and extracts the signal directly travelling
through the fruit for ripeness detection.

At last, our system identifies the fruit ripeness level by
measuring the similarity between the extracted features and
the pre-built ripeness profiles. The MODWT is used to extract
features over multiple channels and the cross correlation is
used to compare the features against the ripeness profiles in
the library. The testing fruit is identified as one of the following
ripeness levels: unripen, half ripen, ripen and over ripen.

B. CFR Sampling and Data Calibration

With 802.11n/ac systems, the WiFi NICs track fine-grained
channel state information, which is a sampled version of
the channel response including both phase and amplitude
information. On the standard 20MHz WiFi channel, it mea-
sures the amplitude and phase for each of the 56 OFDM
subcarriers. With wider 40MHz channels, CSI measurements
are available for 128 subcarriers. In our work, we utilize all
available 20MHz WiFi channels at 5GHz. To ensure that the
channel hopping goes through all the channels within the
coherence time, the hopping delay is set as 0.25ms. Note that
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the coherence time in typical indoor environment is around
300ms [9]. This allows us to collect multiple packets at each
channel within the coherence time.

In particular, we denote csip,q as the CSI complex vector
sampled at the pth packet of the qth channel. Each CSI
complex vector in frequency domain can be represented as:

csip,q = [csi1p,q, csi
2
p,q, · · · , csiKp,q], (3)

where K is the total number of subcarriers reported at each
channel per packet (i.e., K = 56) and csikp,q is the sampled
channel response at the kth subcarrier.

Since the CSI measurements are extracted by sampling
the channel frequency response, the raw CSI measurements
incur significant distortions due to the hardware limitations
of off-the-shelf WiFi NICs. Thus the reported CSI phase
measurement 6 csikp,q can be further represented as:

6 csikp,q = 6 hk
p,q + kϕl + ϕc, (4)

where 6 hk
p,q represents the phase rotation due to signal

propagation, ϕl denotes the slope of the linear phase error
and ϕc is the constant phase shift error.

As our system relies on the CSI measurements to derive
fine-grained power delay profile for multipath removal, we
need to correct errors in the CSI measurements. First, the am-
plitude error is discovered to follow Gaussian distribution [15],
it could be mitigated by averaging CSI measurements from
multiple packets that within the coherence time [32]. The
constant phase error ϕc, is caused by the residual central
frequency offset. We select a reference channel from all the
available channels and mitigate it through correcting the phase
difference from each channel. The linear phase error ϕl is a
frequency dependent error and can be further divided into two
components: ϕl = ϕd +ϕs. The phase error ϕd is observed to
follow the Gaussian distribution with zero mean [15]. Thus can
be mitigated by averaging multiple CSI phase measurements
collected at each channel [32].

The second component ϕs is introduced by the residual
sampling frequency offset [15]. After removing phase errors
ϕc and ϕd and assuming the phase compensation for ϕs is
ϕ

′

s, Equation 4 can be rewritten as:

6 ̂csikp,q = 6 hk
p,q + kϕs − kϕ

′

s. (5)

By gradually changing the value of ϕ
′

s , different power delay
profiles can be derived for each channel. The optimum phase
compensation ϕs can be found when the differences in derived
power delay profiles across multiple channels are minimized.

In particular, it can be formulated as an optimization problem
as following:

min
ϕ′

s

Q∑
q,q′=1

||gq(ϕ
′

s)− gq′ (ϕ
′

s)||2, q 6= q
′
, (6)

where gq(ϕ
′

s) denotes the derived power delay profile at
the qth channel and Q is the total number of channels. By
obtaining an optimum value of ϕ

′

s, we are able to remove the
linear phase error ϕs from the CSI phase measurements.

Figure 5(a) shows the phases across different channels after
calibrating ϕs. As shown in Figure 5(a), after calibration, the
phases of the overlapped subcarriers at three different 2.4GHz
band channels now demonstrate similarity and consistency.
Thus we can pick either channel as reference to stitch them
together. Figure 5(b) shows three non-overlapping channels at
5GHz band after phase calibration.

C. Multipath Removal
Multipath removal leverages a fine-grained power delay

profile to extract the signal that directly travels through the
fruit for ripeness detection. Since a power delay profile derived
from one single WiFi channel provides insufficient time delay
resolution, our system stitches all the available channels at
5GHz together to improve the resolution for extracting the
signal that travels through the shortest path.

Due to the regulations at many countries, the usable chan-
nels at 5GHz are unequally and non-contiguous spaced. For
example, the usable channels at 5GHz on the Atheros NICs
are separated into four segments. The venders disabled some
channels in compliance with the local regulations. We thus
cannot simply use IFFT for power delay profile derivation,
as it only works for uniformly-spaced frequency measure-
ments. Instead, we adopt inverse Non-uniform Discrete Fourier
Transform (NDFT), which works for non-uniformly spaced
channels [28]. For fine-grained power profile derivation, given
the calibrated CSI measurements from last step as:

CSI = [ĈSI1, ..., ĈSIq, ...], (7)

where q denotes the qth channel, we can formulate the inverse
NDFT as following:

min
g
||CSI−Fg||2, (8)

where g represents the power delay profile that we search for,
F is Fourier matrix. The goal is to find an optimum solution
of g that minimizes the difference between CSI and Fourier
Transform of g.
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Such an optimization problem can be viewed as an under-
determined system, which yields several possible solutions. To
pick the best one, we need to add constraints to filter out the
less desired ones. To find constraints, we look into the char-
acteristic of signal propagation in indoor environment. Based
on previous observations [28], although multiple paths exist in
typical indoor environment, only a few paths would dominate
the signal propagation. It is because they travel through shorter
paths and suffer less attenuations when comparing to longer
ones. We thus add one constraint to the inverse NDFT: among
all the solutions of g that satisfy Equation 8, our system favors
the g with fewer dominating propagation paths.

To solve the Equation 8 with the constraint, we adopt the
proximal gradient method that used to solve convex optimiza-
tion problem [13]. In particular, our system takes CSI as input
and computes the gradient of differentiable term in Equation 8.
After obtaining several solutions, our system selects the one
that with fewer dominating paths. Given the derived fine-
grained power delay profile, we remove the components from
multipath propagations and only keep the component that goes
through the fruit directly. Then, we covert the trimmed power
delay profile back to frequency domain for feature extraction.

Figure 4 shows the amplitude of the channels cover the
same bandwidth before and after multipath removal. As shown
in Figure 4(a), four channels at 5GHz band cover 100MHz
bandwidth with a 40MHz gap in between as highlighted by a
black dot rectangle. After performing inverse NDFT, we are
able to derive a fine-grained power delay profile shown in
Figure 4(b), which indicated the lack of LoS. Then we remove
the multipath components from the power delay profile, only
reserve the signal propagation affect by fruit and convert it
back to frequency domain. The resulting spectrum is shown
in Figure 4(c). We observe that the amplitude continues to
decrease with the increasing frequency. It is consistent with
Equation 2, and shows that a higher frequency would suffer a
larger attenuation when propagating through the fruit.

D. Feature Extraction and Ripeness Identification
After multipath removal process, we obtained the signal

in frequency domain over 600MHz bandwidth that mainly

affected by fruit. Next we need to extract features to identify
the ripeness level by comparing them to the existing profile.
Intuitively, this can be done by adopting varies techniques from
existing works. However, the frequency domain signal from
previous step were calculated using NDFT which introduces
various uncertainty across different signal samples. This is
caused by the nature of using proximal gradient method
to solve under determined system problem. Since various
uncertainty over 600MHz bandwidth signal across different
samples would lead to inconsistent feature extraction. This
might compromise the ripeness level identification process.

To overcome such problem, our system thus adopts Maxi-
mal Overlap Discrete Wavelet Transform (MODWT) [23] to
extract features based on the signals that travel through fruit
at multiple frequencies (i.e., spectrum). First, MODWT is
shift invariant, which means the decomposition outputs stay
invariant on different starting and ending points. This enables
us to retrieve consistent features across a large number of
samples with various uncertainty. Second, the redundancy of
MODWT facilitates detail preservation of the original sample
for multiple level decomposition process.

In particular, MODWT analyzes the signals in both time and
frequency domains by decomposing signals into successive
approximation coefficients along with detailed coefficients.
The approximation coefficients depict the large scale char-
acteristic of change pattern, whereas the detailed coefficients
capture small scale components that represent the fine details
of the changes. Given a signal X(i), each level of MODWT
coefficients are computed based on the following equations:

Wj,i =
∑

l = 0L−1hj,lXi−lmodN ,

Vj,i =
∑

l = 0L−1gj,lXi−lmodN ,
(9)

where Vj,i is the approximation coefficient and Wj,i is the
detailed coefficient. Here hj,l and gj,l are the wavelet filter
and scaling filter respectively. j is the level of decomposition
and l = 1...L is the length of the filter. By applying MODWT
to the extracted signal at each channel recursively for 3 levels,
we obtain both large scale and detailed features.

To identify the degree of ripeness, we utilize cross correla-
tion to calculate the similarity between the extracted features
and the ones in the profile library. It measures the similarity
based on the relative changes and is independent of translations
and scaling in the amplitude. This is done repeated over 3
levels of approximation and detailed features and combined
using empirically assigned weights. The ripeness level with
the profile in the library that has the highest similarity with
the testing fruit is then identified as the detected ripeness level.



Kiwi Avocado

Vendor 1 Vendor 2 Vendor 1 Vendor 2

Unripen 48 32 45 35

Half Ripen 43 31 43 33

Ripen 44 32 40 34

Over Ripen 42 30 44 34

Fruit

Ripeness

Fig. 6. Volumes of fruits in our evaluation.

IV. PERFORMANCE EVALUATION

In this section, we describe our experimental setup and eval-
uate the performance of FruitSense in detecting the ripeness
level of Kiwi fruit and Avocado under different environments.

A. Experiment Setup

We conduct experiments with two laptops (i.e., Dell LAT-
ITUDE E5540), each connecting with an external antenna.
The distance between two external antennas is about 20cm.
The testing fruit is placed in the middle of the two antennas,
thus blocking the line-of-sight propagation. Both laptops run
Ubuntu 12.04 LTS and are equipped with the WiFi NICs of
Atheros AR9580 for extracting CSI measurements [32]. The
transmitter and receiver hop through all available 20MHz WiFi
channels at 5GHz bands in an 802.11n network. There are
total 21 available channels enabled by the Atheros AR9580
card. And they fall into four non-contiguous segments. The
first segment is from 5.18GHz to 5.32 GHz (i.e., the channels
from 36 to 64), whereas the second segment is from 5.5GHz
to 5.58 GHz (i.e., the channels from 100 to 116). The third
one and forth one are from 5.66GHz to 5.7 GHz (i.e., the
channels from 132 to 140) and from 5.745GHz to 5.825GHz
(i.e., the channels from 149 to 165), respectively.

Although the entire 5GHz has the bandwidth over 600MHz,
we can only obtain 420MHz bandwidth from these four
segments. We thus need to use inverse NDFT to derive
the power delay profile for over 600MHz bandwidth based
on unequally and non-contiguous spaced 21 channels. The
channel hopping delay is set as 0.25ms. As the coherence
time in typical indoor environment is about several hundreds
milliseconds [9], we can collect packets across channels within
coherence time as well as obtain multiple packets at each
channel within coherence time. For each packet, we extract
CSI for 56 subcarriers, which are equally distributed in a
20MHz channel.

We experiment with two types of commonly consumed
fruits: kiwi fruit and avocado. The specific cultivars of avocado
and kiwi fruit are Hass and Fuzzy respectively. Each type
of fruit samples are purchased from two different vendors.
Particularly, the production locations for kiwi fruits are USA
and New Zealand for vender 1 and vender 2 respectively,
whereas for avocado they are Mexico and USA for vender
1 and vender 2, respectively. The purchased fruits have four
ripeness levels as commonly adopted by fruit industry: un-
ripen, half ripen, ripen and over ripen [24], [31]. We use a
spectrometer to log the ground truth of the fruit ripeness. For
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Fig. 7. Illustration of experiment setup.
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Fig. 8. Confusion matrix of ripeness level detection for both kiwi and avocado
fruits.

each ripeness level and each type of fruit, we have around
75 fruits under testing. Figure 6 shows the detailed break
down for each ripeness stage, vender, and type of fruit. To
build the fruit ripeness profiles, we pre-select 10 fruits at each
ripeness level with various fruit sizes and average the features
extracted from these fruits. All fruits are tested under the room
temperature(23◦C to 26◦C).

The experiments are conducted in two rooms at three
locations, representing three different multipath environments.
Figure 7 shows the layout of two rooms (i.e., one living room
and one bedroom) and three locations. The bedroom has the
size of 7 ft by 8 ft with one bed, one pair of table and chair.
For the living room, it is 16 ft by 13 ft with regular living room
furniture setup, such as dining table, book shelf, sofa, and TV.
The bedroom environment represents a more compact space
filled with furniture, while the living room setup describes
a typical home environment with a larger space. To test the
robustness of our system to the environment changes, we
experiment with people walking around during the ripeness
detection. In particular, during the data collection, a person
is walking around in the room to create interferences. The
walking trajectory is shown in dash curve in Figure 7.

We use confusion matrix and detection accuracy to evaluate
our system performance. For confusion matrix, each column
represents the fruit ripeness level that was classified by our
system and each row shows the ground truth of the ripeness
level. Each cell in the matrix corresponds to the fraction of
ripeness level in the row that was classified as the ripeness
level in the column. The detection accuracy is the percentage
of the fruit that is correctly identified by our system.

B. Overall Performance

Figure 8 shows the confusion matrix of fruit ripeness
detection for both kiwi and avocado. We observe that for both
fruits, our system achieves overall detection accuracy over
90%. In particular, the overall detection accuracy for avocado



Unripen Half Ripen Ripen Over Ripen
0

0.2

0.4

0.6

0.8

1
D

et
ec

ti
o

n
 A

cc
u

ra
y

   Kiwi
  Avocado

(a) Overall Accuracy

Unripen Half Ripen Ripen Over Ripen
0

1

2

3

Im
p

ro
ve

m
en

t(
%

)

      Kiwi
   Avocado

(b) Improvement

Fig. 9. Detection accuracy and improvement after separating the small and
the large size fruits.
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Fig. 10. Detection accuracy under two multipath environments when using
the ripeness profiles built under a different multipath environment.

is about 91%, whereas it is 90% for kiwi. Moreover, the half
ripen and ripen fruit detection, compared to unripen and over
ripen fruit detection, has a higher detection accuracy for both
kiwi and avocado. Specifically, ripen fruit detection achieves
93% and 94% accuracy for kiwi and avocado respectively. This
is due to the fact that the physiological changes at unripen and
over ripen levels are at slower pace, whereas the changes at
half ripen and ripen levels go through faster processes [24].
Thus, more physiological changes of fruit at half ripen and
ripen stages could be captured for ripeness detection. The
above results show that our system could provide high ac-
curacy in detecting fruit ripeness by using single pair of WiFi
devices. The results also show that our system works with
different multipath environments without location specific or
environment specific calibration for ripeness profile. Still, the
performance could be potentially improved by using additional
pairs of WiFi devices or with multiple antennas.

C. Impact of Fruit Size
We next evaluate the performance when the testing fruits

have similar sizes as that of the fruits used to build ripeness
profiles. In particular, the size of kiwi varies from 55mm to
63mm, whereas it is from 69mm to 85mm for avocado. We
classify each type of fruit into two categories: small fruits
and large fruits. Then, we sense the ripeness of small (large)
fruits with the profiles built from the small (large) size fruits.
Figure 9 shows the the overall accuracy for separating small
and large size fruits and corresponding improvement with
respect to mixed size fruits. We find that our system achieves
slightly better performance at each ripeness level detection
for both kiwi and avocado. In particular, it achieves an overall
accuracy at around 92% for both kiwi and avocado. The overall
improvement is at around 2% when comparing to that of the
mixed fruit case. The results show that our system is not very
sensitive to the fruit size, although a more fine-grained fruit
profile could slightly improve the accuracy.

D. Detailed Study on Multipath Environments
Although our overall performance in Section IV-B shows

that our system works for different multipath environments,
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Fig. 11. Detection accuracy and improvement after separating fruit based on
producing location.

we further perform a more detailed study on whether the per-
formance changes when using the ripeness profile built at one
multipath environment to test the fruits at a different multipath
environment. Specifically, we build the ripeness profiles when
the fruits are at the location 1 in Figure 7. We then use such
profiles to detect the fruits that placed at the location 2 (in the
same room), and location 3 (in a different room). Figure 10(a)
and Figure 10(b) present the performance of ripeness detection
for kiwi and avocado, respectively. We observe that our system
does not suffer from performance degradation although the
training and testing environments are under different multipath
propagation. In particular, the overall detection accuracy still
maintains at around 90% for both kiwi and avocado. These
results further demonstrate the effectiveness of the multipath
removal that leverages the larger bandwidth at 5GHz. It shows
that our fruit ripeness detection system is location independent
and environment independent. Once the profile is built, it can
be applied to different environments without profile updating
or calibration.

E. Impact of Fruit Producing Location
We next study the impact of production location of the fruit

by separating each type of fruits based on their producing
area. In particular, we build the ripeness profiles based on the
producing area of each type of fruits. Then the ripeness profiles
are used to test the fruits produced in the same area. The two
producing areas for kiwi is USA and New Zealand, whereas
they are USA and Mexico for avocado. The results are shown
in Figure 11. We find that the detection accuracy has obvious
improvement for both kiwi and avocado when compared to
separating the fruits based on their sizes. Specifically, the
overall accuracy is close to 94% for kiwi and at about 93%
for avocado. The results show that the producing area of fruits
plays an important role when building the profile, even for
the same type of fruit. This is because different producing
areas result in different percentage of dry matter and moisture
content, which is also discovered by existing work [21]. It
suggests that a more fine-grained profile based on producing
areas could improve the ripeness detection accuracy.

V. RELATED WORK

There have been wide ranges of work utilizing specialized
or commodity RF devices to perform human sensing. For
example, E-Eyes [30] is able to track daily activities and
WiSee [25] uses specialized RF device to sense whole home
gestures. Moreover, WiKey [5] has the ability to sense typing
on keyboard, whereas system proposed by Liu et al. [19] is
able to sense heartbeats and breathing. Besides motion and



activity tracking, many RF based localization systems have
been proposed. For example, Chronos [28] achieves decimeter-
level localization with a single WiFi AP, and WiTrack [4]
utilizes RF body reflections to enable localization.

In general, the approaches for fruit ripeness detection can
be divided into two categories: destructive and non-destructive
methods. By measuring the sugar to acid ratio or total content
of sugar or acid with refractometer, Jones and Scott [16] are
able to track the ripeness level. Similar methods such as gas
chromatograph [7] and mass spectrometer [26] can also be
used to further analyze the chemical compounds of different
fruits to identify different ripeness levels. Such methods how-
ever are destructive and compromise the intactness of sample
and prevent it from future consumption.

For non-destructive methods, Peirs et al. [22] use NIR
spectroscopy for post-harvest quality evaluation of apples.
Imaging techniques such as X-ray computed tomography [14]
and magnetic resonance imaging [6] have also been shown
to be effective in fruit quality tracking. Moreover, ultrasonic
signals have also been utilized to determine fruit matu-
rity level [3]. The above approaches though provide non-
destructive measuring, usually require expensive laboratory
equipments. Recently, Das et al. [8] use portable spectrometer
that senses the UV fluorescence of Chlorophyll for ripeness.
Commercial devices such as SCiO [2] and Changhong H2 [1]
can also achieve similar functionality using portable optical
sensors. However, there are non-negligible costs incurred in
purchasing dedicated spectral sensors.

VI. CONCLUSION

This paper presents FruitSense, which is capable of sensing
the ripeness of fruit by analyzing wireless signals traveling
through the fruit. The proposed system, FruitSense, is non-
destructive and only requires a pair of off-the-shelf WiFi
devices. The insight is that the signals traveling through the
fruit could capture the physiological changes associated with
fruit ripening. Experimental results under different multipath
environments show that FruitSense can detect the ripeness lev-
els of both kiwi fruit and avocado with an accuracy over 90%.
FruitSense builds on the growing interest in using wireless
signals for human sensing. The proposed work further expands
the scope of human sensing to sensing the bio-information of
fruit crops. We believe the implication of the work could be
extended beyond classifying the fruit ripeness, particularly in
quantifying the physiological compounds of fruit with more
advanced signal process and machine learning techniques.
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